Robust Storage Systems Design

Marc Goetschalckx

marc.goetschalckx@isye.gatech.edu

ISERC 2014 Montreal, Canada

Warehouse Operations Flow Path Schematic (FFN)

Research Goal

Design framework for storage systems

- ✓ Unit loads
 - Single and dual command
- ✓ Direct access
 - Single-deep rack and single-load high floor stacks
- ✓ Comprehensive
 - Rich set of facility configurations and storage policies
- √ Robust: efficiency and risk (stochastic)
- ✓ Component of design methodology for warehousing systems

Sainsbury's Grocery Distribution Center

Empty Single-Deep Pallet Rackwith Four Levels

ASRS Pallet Unit Load High-Rise Storage

Wine Barrels in a Cantilever Rack

Definitions

Storage Policy

✓ Set of rules that determine where to store arriving SKUs in a warehousing system

Unit Load

- ✓ A collection of materials that can be transported, stored, and controlled (managed) as a single unit
 - Examples
 - Vast majority of discrete goods

Warehousing Storage Objectives: Back to Basics

- Minimize the cost of expected travel time for given input-output operations
 - ✓ Minimize MH equipment and personnel
 - √ Variable (marginal) costs
- Minimize the cost of required storage space for given stored inventory
 - ✓ Minimize capital investment
 - √ Fixed costs

Main Design Observation

- Very few configuration decisions
- Most compared with complete enumeration (user driven comparison)
 - ✓ Technology, type of material handling equipment, aisles have ladder structure or not, aisle orientation, location of the input/output points, storage policy
 - ✓ Many combinations
 - Need computational support to evaluate designs quickly

Design Decision Variables

- Main design decision variables
 - ✓ Number of aisles, number of levels (rack height), number of columns (aisle length)
- Secondary decisions
 - ✓ Load locations, number of personnel and MH equipment
- Decomposition
- Pareto optimal comparison of efficiency versus risk

Pareto Risk versus Efficiency Comparison

Prior Research on Storage Systems Design and Storage Policies

- Long research history and still active area
 - ✓ Heskett (COI) 1963,...to Ang et al. 2012
 - ✓ Most recent reviews Gu et al. 2007 + 2010
 - ✓ Contemporary blogs
 - ✓ Industry norms FEM, VDI
- Results and algorithms are strongly assumption driven
 - ✓ Integration and unified assumptions are the challenge

Storage Policies Classification

Storage Policy Classification: Additional Considerations

- Stationary or not warehousing operations
 - ✓ Repetitive, seasonal, build-up (single use), random events

Decomposition Algorithm

- One user-specified design
 - ✓ E.g. ASRS, random storage
- Master problem: determine NA, NL, NC
- Sub problem:
 - ✓ Split by scenario
 - √ Compute assignment costs (parameters)
 - ✓ Optimize scenario variables and (objective) cost
 - √ Return EV and SD of scenario costs

Two Examples

- General load-based assignment (VAP)
 - ✓ Most general, very large MIPs, most computationally demanding
 - ✓ Ultimate verification algorithm
- Technology comparison with random storage
 - ✓ Using FEM travel time norms
 - ✓ Different risk measures

Occupancy Gantt Chart: Rack Based Direct Access

VAP Conclusions

- Very large integer optimization problem
- Very tight LP relaxation
- Efficient sub problem and problem size indicate decomposition
- Very small gap for Lagrangean relaxation upper bound
- Highly primal and dual degenerate
- Acceptable penalty for primal heuristic

Technology Comparison Example

- Automated storage and retrieval system (ASRS) versus person-controlled narrow aisle reach truck (NAT)
- System and construction, operations, and maintenance costs
- ASRS
 - √ Simultaneous travel, aisle-captive crane
- NAT
- ✓ Sequential travel in the aisle, non aisle-captive Georgia Institute

Technology Comparison Example

Model characteristics

✓ Cubic space constraint (master), volume and area cost terms (sub) become parameters, quadratic sub objective (risk = variance), efficiency versus risk tradeoff weight

Algorithm

- √ Finite ranges for NA, NL, NC
- ✓ Solved by complete enumeration in master

Technology Comparison Example: Standard Deviation Risk

Technology Comparison Example: Downside Risk (Semi-Deviation)

Unit Load Storage Policy Conclusions

- Unit load systems are very common
- Single or dual command cycles
- Two main objectives:
 - Cost of storage space,
 - Cost of total travel time
- Three planning problems
 - Strategic configuration and sizing
 - Tactical storage policy
 - Operational storage & retrieval sequence

Unit Load Storage Policy Conclusions Continued

- Operator-controlled systems are less expensive, but have larger cost variability
- Above is true regardless of the risk measure (standard deviation or downside risk)
- On an equal low-risk basis automated systems are less expensive

May I answer any questions?

